Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: covidwho-20245260

ABSTRACT

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chick Embryo , Infectious bronchitis virus/genetics , Organ Culture Techniques , Trachea , Chickens , Cell Line , Coronavirus Infections/veterinary
2.
Current Drug Therapy ; 18(3):247-261, 2023.
Article in English | ProQuest Central | ID: covidwho-2326688

ABSTRACT

Background: Cancer is a leading cause of death for people worldwide, in addition to the rise in mortality rates attributed to the Covid epidemic. This allows scientists to do additional research. Here, we have selected Integerrimide A, cordy heptapeptide, and Oligotetrapeptide as the three cyclic proteins that will be further studied and investigated in this context.Methods: Docking research was carried out using the protein complexes 1FKB and 1YET, downloaded from the PDB database and used in the docking investigations. Cyclopeptides have been reported to bind molecularly to human HSP90 (Heat shock protein) and FK506. It was possible to locate HSP90 in Protein Data Banks 1YET and 1FKB. HSP90 was retrieved from Protein Data Bank 1YET and 1FKB. Based on these findings, it is possible that the anticancer effects of Int A, Cordy, and Oligo substances could be due to their ability to inhibit the mTOR rapamycin binding domain and the HSP90 Geldanamycin binding domain via the mTOR and mTOR chaperone pathways. During the calculation, there were three stages: system development, energy reduction, and molecular dynamics (also known as molecular dynamics). Each of the three compounds demonstrated a binding affinity for mTOR's Rapamycin binding site that ranged from -6.80 to -9.20 Kcal/mol (FKB12).Results: An inhibition constant Ki of 181.05 nM characterized Cordy A with the highest binding affinity (-9.20 Kcal/mol). Among the three tested compounds, Cordy A was selected for MD simulation. HCT116 and B16F10 cell lines were used to test each compound's anticancer efficacy. Doxorubicin was used as a standard drug. The cytotoxic activity of substances Int A, Cordy A, and Oligo on HCT116 cell lines was found to be 77.65 μM, 145.36 μM, and 175.54 μM when compared to Doxorubicin 48.63 μM, similarly utilizing B16F10 cell lines was found to be 68.63 μM, 127.63 μM, and 139.11 μM to Doxorubicin 45.25 μM.Conclusion: Compound Cordy A was more effective than any other cyclic peptides tested in this investigation.

3.
Front Immunol ; 14: 1162739, 2023.
Article in English | MEDLINE | ID: covidwho-2314172

ABSTRACT

Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , Chaperonin 60 , Humans , COVID-19 , Cytokines/metabolism , Inflammation/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/metabolism , Chaperonin 60/pharmacology , Chaperonin 60/therapeutic use
4.
Cell Stress Chaperones ; 28(3): 231-237, 2023 05.
Article in English | MEDLINE | ID: covidwho-2294575

ABSTRACT

Hsp90 is a molecular chaperone responsible for regulating proteostasis under physiological and pathological conditions. Its central role in a range of diseases and potential as a drug target has focused efforts to understand its mechanisms and biological functions and to identify modulators that may form the basis for therapies. The 10th international conference on the Hsp90 chaperone machine was held in Switzerland in October 2022. The meeting was organized by Didier Picard (Geneva, Switzerland) and Johannes Buchner (Garching, Germany) with an advisory committee of Olivier Genest, Mehdi Mollapour, Ritwick Sawarkar, and Patricija van Oosten-Hawle. This was a much anticipated first in-person meeting of the Hsp90 community since 2018 after the COVID-19 pandemic led to the postponement of the 2020 meeting. The conference remained true to the tradition of sharing novel data ahead of publication, providing unparalleled depth of insight for both experts and newcomers to the field.


Subject(s)
COVID-19 , Pandemics , Humans , Switzerland , Protein Binding , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/metabolism
5.
Pathogens ; 9(4)2020 Mar 26.
Article in English | MEDLINE | ID: covidwho-2266968

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious, intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV as an emerging and re-emerging epizootic virus of swine causes substantial economic losses to the pig industry in China and other countries. In China, the occurrence of PED shows significant seasonal variations, usually outbreak during the winter season. The epidemic characteristics of PED may be highly correlated with the changes of ambient temperature. However, molecular mechanism on the seasonal occurrence of PED still remains unclear. It has been widely observed that low ambient temperature up-regulates the expression of host heat shock protein 70 (Hsp70). Here, we showed that nucleotide and protein levels of Hsp70 were up-regulated in the intestinal of cold exposed pig and cold exposed Vero E6 cells. We found that overexpression of Hsp70 could increase PEDV mRNA synthesis and protein expression in Vero E6 and IPEC-J2 cells, while the siRNAs mediated knockdown of Hsp70 and VER155008 mediated inhibition of Hsp70 resulted in inhibition of viral mRNA synthesis and protein expression in Vero E6 cells. These data suggested that Hsp70 positively regulated PEDV mRNA synthesis and protein expression, which being helpful for understanding the seasonality of PED epidemics and development of novel antiviral therapies in the future.

6.
Virus Res ; 329: 199103, 2023 05.
Article in English | MEDLINE | ID: covidwho-2288833

ABSTRACT

A variety of swine enteric coronaviruses (SECoVs) have emerged and are prevalent in pig populations, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome (SADS)-CoV, a newly identified bat-origin CoV with zoonotic potential. Unfortunately, available traditional, inactivated and attenuated SECoV vaccines are of limited efficacy against the variants currently circulating in most pig populations. In this study, we evaluated the role of host factor heat shock protein 90 (Hsp90) as an antiviral target against SECoVs, exemplified by SADS-CoV. Pharmacological inhibition of Hsp90 diminished SADS-CoV replication significantly in porcine and human cell lines, and also decreased replication of SADS-CoV in a porcine intestinal enteroid model. Further mechanistic experiments revealed that both porcine and human isoforms of Hsp90 interact with the SADS-CoV nucleocapsid (N) protein, and inhibition of Hsp90 resulted in autophagic degradation of N protein. Moreover, we linked Hsp90 to virus-induced cellular pyroptosis, as SADS-CoV was found to trigger caspase-1/gasdermin-d-mediated pyroptotic cell death, which was mitigated by inhibition of Hsp90. Finally, we demonstrated that Hsp90 also associated with N proteins and was involved in propagation of PEDV, PDCoV and TGEV. This study thus extends our understanding of immune responses to SADS-CoV infection and offers a new potential therapeutic option against four SECoVs.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Transmissible gastroenteritis virus , Animals , Humans , Alphacoronavirus/genetics , Antiviral Agents/pharmacology , Heat-Shock Proteins , Swine , HSP90 Heat-Shock Proteins/metabolism
7.
J Biol Chem ; 299(5): 104668, 2023 05.
Article in English | MEDLINE | ID: covidwho-2288832

ABSTRACT

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Subject(s)
COVID-19 , HSP90 Heat-Shock Proteins , Pyroptosis , SARS-CoV-2 , Virion , Humans , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , HSP90 Heat-Shock Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism , Viral Proteins/metabolism
8.
Front Biosci (Landmark Ed) ; 28(2): 25, 2023 02 08.
Article in English | MEDLINE | ID: covidwho-2258529

ABSTRACT

In the present era of global warming and dramatically increased environmental pollution posing a threat to animal life, the understanding and manipulation of organisms' resources of stress tolerance is apparently a question of survival. Heat stress and other forms of stressful factors induce a highly organized response of organisms at the cellular level where heat shock proteins (Hsps) and in particular Hsp70 family of chaperones are among the major players in the protection from the environmental challenge. The present review article summarizes the peculiarities of the Hsp70 family of proteins protective functions being a result of many millions of years of adaptive evolution. It discusses the molecular structure and specific details of hsp70 gene regulation in various organisms, living in diverse climatic zones, with a special emphasis on the protective role of Hsp70 in adverse conditions of the environment. The review discusses the molecular mechanisms underlying Hsp70-specific properties that emerged in the course of adaptation to harsh environmental conditions. This review also includes the data on the anti-inflammatory role of Hsp70 and the involvement of endogenous and recombinant Hsp70 (recHsp70) in proteostatic machinery in various pathologies including neurodegenerative ones such as Alzheimer's and Parkinson's diseases in rodent model organisms and humans in vivo and in vitro. Specifically, the role of Hsp70 as an indicator of disease type and severity and the use of recHsp70 in several pathologies are discussed. The review discusses different roles exhibited by Hsp70 in various diseases including the dual and sometimes antagonistic role of this chaperone in various forms of cancer and viral infection including the SARS-Cov-2 case. Since Hsp70 apparently plays an important role in many diseases and pathologies and has significant therapeutic potential there is a dire need to develop cheap recombinant Hsp70 production and further investigate the interaction of externally supplied and endogenous Hsp70 in chaperonotherapy.


Subject(s)
Adaptation, Physiological , HSP70 Heat-Shock Proteins , Animals , Humans , COVID-19 , HSP70 Heat-Shock Proteins/genetics , Parkinson Disease , Neoplasms , Alzheimer Disease
9.
Appl Environ Microbiol ; 89(3): e0210622, 2023 03 29.
Article in English | MEDLINE | ID: covidwho-2270047

ABSTRACT

There is mounting evidence of the contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the sewage, surface water, and even marine environment. Various studies have confirmed that bivalve mollusks can bioaccumulate SARS-CoV-2 RNA to detectable levels. However, these results do not provide sufficient evidence for the presence of infectious viral particles. To verify whether oysters can bind the viral capsid and bioaccumulate the viral particles, Pacific oysters were artificially contaminated with the recombinant SARS-CoV-2 spike protein S1 subunit (rS1). The bioaccumulation pattern of the rS1 in different tissues was investigated by immunohistological assays. The results revealed that the rS1 was bioaccumulated predominately in the digestive diverticula. The rS1 was also present in the epithelium of the nondigestive tract tissues, including the gills, mantle, and heart. In addition, three potential binding ligands, including angiotensin-converting enzyme 2 (ACE 2)-like substances, A-type histo-blood group antigen (HBGA)-like substances, and oyster heat shock protein 70 (oHSP 70), were confirmed to bind rS1 and were distributed in tissues with various patterns. The colocalization analysis of rS1 and those potential ligands indicated that the distributions of rS1 are highly consistent with those of ACE 2-like substances and oHSP 70. Both ligands are distributed predominantly in the secretory absorptive cells of the digestive diverticula and may serve as the primary ligands to bind rS1. Therefore, oysters are capable of bioaccumulating the SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands, especially in digestive diverticula. IMPORTANCE This is the first article to investigate the SARS-CoV-2 spike protein bioaccumulation pattern and mechanism in Pacific oysters by the histochemical method. Oysters can bioaccumulate SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands. The new possible foodborne transmission route may change the epidemic prevention strategies and reveal some outbreaks that current conventional epidemic transmission routes cannot explain. This original and interdisciplinary paper advances a mechanistic understanding of the bioaccumulation of SARS-CoV-2 in oysters inhabiting contaminated surface water.


Subject(s)
COVID-19 , Ostreidae , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , RNA, Viral , Bioaccumulation , Water
10.
Proteins ; 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2244983

ABSTRACT

The heat shock protein 70 kDa (Hsp70) chaperone system serves as a critical component of protein quality control across a wide range of prokaryotic and eukaryotic organisms. Divergent evolution and specialization to particular organelles have produced numerous Hsp70 variants which share similarities in structure and general function, but differ substantially in regulatory aspects, including conformational dynamics and activity modulation by cochaperones. The human Hsp70 variant BiP (also known as GRP78 or HSPA5) is of therapeutic interest in the context of cancer, neurodegenerative diseases, and viral infection, including for treatment of the pandemic virus SARS-CoV-2. Due to the complex conformational rearrangements and high sequential variance within the Hsp70 protein family, it is in many cases poorly understood which amino acid mutations are responsible for biochemical differences between protein variants. In this study, we predicted residues associated with conformational regulation of human BiP and Escherichia coli DnaK. Based on protein structure networks obtained from molecular dynamics simulations, we analyzed the shared information between interaction timelines to highlight residue positions with strong conformational coupling to their environment. Our predictions, which focus on the binding processes of the chaperone's substrate and cochaperones, indicate residues filling potential signaling roles specific to either DnaK or BiP. By combining predictions of individual residues into conformationally coupled chains connecting ligand binding sites, we predict a BiP specific secondary signaling pathway associated with substrate binding. Our study sheds light on mechanistic differences in signaling and regulation between Hsp70 variants, which provide insights relevant to therapeutic applications of these proteins.

12.
Front Immunol ; 13: 1080786, 2022.
Article in English | MEDLINE | ID: covidwho-2198918

ABSTRACT

Heat shock proteins (Hsps), including Hsp90 and Hsp70, are intra- and extracellular molecules implicated in cellular homeostasis and immune processes and are induced by cell stress such as inflammation and infection. Autoimmune bullous disorders (AIBDs) and COVID-19 represent potentially life-threatening inflammatory and infectious diseases, respectively. A significant portion of AIBDs remain refractory to currently available immunosuppressive therapies, which may represent a risk factor for COVID-19, and suffer from treatment side-effects. Despite advances in vaccination, there is still a need to develop new therapeutic approaches targeting SARS-CoV-2, especially considering vaccine hesitancy, logistical distribution challenges, and breakthrough infections. In this mini review, we briefly summarize the role of targeting Hsp90/70 as a promising double-edged sword in the therapy of AIBDs and COVID-19.


Subject(s)
Autoimmune Diseases , COVID-19 , Heat-Shock Proteins , Skin Diseases, Vesiculobullous , Humans , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , COVID-19/genetics , COVID-19/immunology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/immunology , SARS-CoV-2 , Skin Diseases, Vesiculobullous/drug therapy , Skin Diseases, Vesiculobullous/genetics , Skin Diseases, Vesiculobullous/immunology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/immunology , COVID-19 Drug Treatment
13.
Phytomed Plus ; 3(1): 100402, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165763

ABSTRACT

Background: The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. Purpose: The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. Study design: We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. Methods: A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. Results: The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. Conclusions: The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.

14.
Anal Chim Acta ; 1242: 340716, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2149181

ABSTRACT

In this research, by using aptamer-conjugated gold nanoparticles (aptamer-AuNPs) and a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and Acropora-like gold (ALG) nanostructure, a sandwich-like system provided for sensitive detection of heat shock protein 70 kDa (HSP70), which applied as a functional biomarker in diagnosis/prognosis of COVID-19. Initially, the surface of the GCE was improved with rGO and ALG nanostructures, respectively. Then, an aptamer sequence as the first part of the bioreceptor was covalently bound on the surface of the GCE/rGO/ALG nanostructures. After adding the analyte, the second part of the bioreceptor (aptamer-AuNPs) was immobilized on the electrode surface to improve the diagnostic performance. The designed aptasensor detected HSP70 in a wide linear range, from 5 pg mL-1 to 75 ng mL-1, with a limit of detection (LOD) of ∼2 pg mL-1. The aptasensor was stable for 3 weeks and applicable in detecting 40 real plasma samples of COVID-19 patients. The diagnostic sensitivity and specificity were 90% and 85%, respectively, compared with the reverse transcription-polymerase chain reaction (RT-PCR) method.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , Graphite/chemistry , Carbon/chemistry , Limit of Detection , Prognosis , Electrochemical Techniques/methods , Biosensing Techniques/methods , Electrodes , COVID-19 Testing
15.
Journal of Clinical and Experimental Medicine ; 282(4):253-257, 2022.
Article in Japanese | Ichushi | ID: covidwho-2057978
16.
Biomolecules ; 12(10)2022 09 26.
Article in English | MEDLINE | ID: covidwho-2043571

ABSTRACT

AIMS: We hypothesized that critically ill patients with SARS-CoV-2 infection and insulin resistance would present a reduced Heat Shock Response (HSR), which is a pathway involved in proteostasis and anti-inflammation, subsequently leading to worse outcomes and higher inflammation. In this work we aimed: (i) to measure the concentration of extracellular HSP72 (eHSP72) in patients with severe COVID-19 and in comparison with noninfected patients; (ii) to compare the HSR between critically ill patients with COVID-19 (with and without diabetes); and (iii) to compare the HSR in these patients with noninfected individuals. METHODS: Sixty critically ill adults with acute respiratory failure with SARS-CoV-2, with or without diabetes, were selected. Noninfected subjects were included for comparison (healthy, n = 19 and patients with diabetes, n = 22). Blood samples were collected to measure metabolism (glucose and HbA1c); oxidative stress (lypoperoxidation and carbonyls); cytokine profile (IL-10 and TNF); eHSP72; and the HSR (in vitro). RESULTS: Patients with severe COVID-19 presented higher plasma eHSP72 compared with healthy individuals and noninfected patients with diabetes. Despite the high level of plasma cytokines, no differences were found between critically ill patients with COVID-19 with or without diabetes. Critically ill patients, when compared to noninfected, presented a blunted HSR. Oxidative stress markers followed the same pattern. No differences in the HSR (extracellular/intracellular level) were found between critically ill patients, with or without diabetes. CONCLUSIONS: We demonstrated that patients with severe COVID-19 have elevated plasma eHSP72 and that their HSR is blunted, regardless of the presence of diabetes. These results might explain the uncontrolled inflammation and also provide insights on the increased risk in developing type 2 diabetes after SARS-CoV-2 infection.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adult , Humans , Interleukin-10 , SARS-CoV-2 , Critical Illness , HSP72 Heat-Shock Proteins/metabolism , Glycated Hemoglobin , Heat-Shock Response , Cytokines , Inflammation , Molecular Chaperones , Glucose
17.
Curr Pharm Des ; 28(32): 2664-2676, 2022.
Article in English | MEDLINE | ID: covidwho-2009796

ABSTRACT

Heat shock protein 90 (Hsp90) is a chaperone protein that prevents many other proteins from aggregating by folding them in a certain way. Hsp90 consists of three structural domains: N-terminal, middle and C-terminal domains. Hsp90 has many activities in numerous proteins and signaling pathways like chimeric fusion proteins, steroid hormone receptors, tumor suppressor genes, and cell cycle regulatory proteins. The role of Hsp90 is not only in cancer but also in other diseases like COVID-19, leishmaniasis, diabetes, flavi virus, systemic sclerosis, grass carp reovirus, psoriasis, malaria, cardiac fibrosis, and alcohol-related liver diseases. This review is a compilation of the pharmacological profile of Hsp90 inhibitors, problems associated with them, and suggested remedies for the same.


Subject(s)
Benzoquinones , COVID-19 , Humans , Lactams, Macrocyclic , Macrolides , HSP90 Heat-Shock Proteins/metabolism , Cell Cycle Proteins , Steroids , Hormones
18.
Ital J Pediatr ; 48(1): 158, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2009439

ABSTRACT

BACKGROUND: Henoch-Schönlein purpura (HSP) is an IgA-mediated small vessel vasculitis, typical of childhood. It's a self-limiting disease and it affects different systems. HSP is characterized by dermatological, abdominal, joint and renal clinical manifestations. This condition usually occurs upon infections, mainly upper respiratory tract ones, medications, vaccinations and malignancies. CASE PRESENTATION: We describe the case of a 11 year-old girl who developed a urticarial rash 12 days after the first dose of Pfizer-BioNTech BNT16B2b2 mRNA vaccine and a clear picture of Henoch Schönlein purpura 5 days after administration of the second dose of the same vaccine. CONCLUSION: To our knowledge, this is the first description of a pediatric patient with Henoch-Schönlein purpura occurring in association with vaccination against COVID-19.


Subject(s)
BNT162 Vaccine , COVID-19 , IgA Vasculitis , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , Child , Female , Humans , IgA Vasculitis/chemically induced , IgA Vasculitis/diagnosis
19.
Front Cell Infect Microbiol ; 12: 899546, 2022.
Article in English | MEDLINE | ID: covidwho-1952264

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has currently infected over 430 million individuals worldwide. With the variant strains of SARS-CoV-2 emerging, a region of high mutation rates in ORF8 was identified during the early pandemic, which resulted in a mutation from leucine (L) to serine (S) at amino acid 84. A typical feature of ORF8 is the immune evasion by suppressing interferon response; however, the mechanisms by which the two variants of ORF8 antagonize the type I interferon (IFN-I) pathway have not yet been clearly investigated. Here, we reported that SARS-CoV-2 ORF8L and ORF8S with no difference inhibit the production of IFN-ß, MDA5, RIG-I, ISG15, ISG56, IRF3, and other IFN-related genes induced by poly(I:C). In addition, both ORF8L and ORF8S proteins were found to suppress the nuclear translocation of IRF3. Mechanistically, the SARS-CoV-2 ORF8 protein interacts with HSP90B1, which was later investigated to induce the production of IFN-ß and IRF3. Taken together, these results indicate that SARS-CoV-2 ORF8 antagonizes the RIG-I/MDA-5 signaling pathway by targeting HSP90B1, which subsequently exhibits an inhibitory effect on the production of IFN-I. These functions appeared not to be influenced by the genotypes of ORF8L and ORF8S. Our study provides an explanation for the antiviral immune suppression of SARS-CoV-2 and suggests implications for the pathogenic mechanism and treatment of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Membrane Glycoproteins , Viral Proteins , COVID-19/virology , Humans , Immune Evasion , Interferon Type I/metabolism , Interferon-beta/genetics , Membrane Glycoproteins/metabolism , SARS-CoV-2 , Signal Transduction , Viral Proteins/metabolism
20.
Biochimie ; 200: 99-106, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1866907

ABSTRACT

The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion. We describe the expression, purification, and characterization of ORF9b alone or coexpressed with the cytosolic domain of human TOM70 in E. coli. ORF9b has 97 residues and was purified as a homodimer with an molecular mass of 22 kDa as determined by SEC-MALS. Circular dichroism experiments showed that Orf9b alone exhibits a random conformation. The ORF9b-TOM70 complex characterized by CD and differential scanning calorimetry showed that the complex is folded and more thermally stable than free TOM70, indicating strong binding. Importantly, protein-protein interaction assays demonstrated that full-length human Hsp90 is capable of binding to free TOM70 but not to the ORF9b-TOM70 complex. To narrow down the nature of this inhibition, the isolated C-terminal domain of Hsp90 was also tested. These results were used to build a model of the mechanism of inhibition, in which ORF9b efficiently targets two sites of interaction between TOM70 and Hsp90. The findings showed that ORF9b complexed with TOM70 prevents the interaction with Hsp90, and this is one major explanation for SARS-CoV-2 evasion of host innate immunity via the inhibition of the interferon activation pathway.


Subject(s)
COVID-19 , SARS-CoV-2 , Carrier Proteins/metabolism , Escherichia coli/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Pandemics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL